Accelerator Physics Experiments for Stochastic Cooling Development

Mike Brennan APEX 2005 Workshop

- 1. New hardware for 2006
- 2. Dedicated time for set up
- 3. Possibility to test cooling with protons
- 4. Accelerator experiment using S.C. gear

New Hardware

• Pickup moved from Q4@ 11 to Q4@ 12 o'clock (to gain time for signal processing and fill time for kicker cavities)

New Hardware

- New and more kicker cavities
 - 16 cavities, from 5.0 to 8.0 GHz
 - Thermally stable for CW operation
 - Enough to cool Gold

Cavities are designed with CST MicroWave Studio

 $R/Q = 120 \Omega$, f = 5.0, 5.2, 7.8, 8.0 GHz

New Hardware

Dedicated time for Set Up

- 1. We need about 2 hours at store (once) to check aperture and BPM read out
- 2. After that we believe (based on last year) that we only need to check orbit via BPM
- 3. Whenever we close the cavities we watch the lifetime monitor and backgrounds

Low (very) Intensity Bunch/fill to Test Cooling

- We could try to make a low intensity bunch
 - $-\sim 10^9$ per bunch, 1% of production bunch
 - The idea (proposed by Tom Hayes) is to fill the first bunch in Yellow then use radial steering to peel intensity
 - Must be first bunch in train (electronic saturation)
 - The technique would require development
 - Where do the losses go? (is a bump better?)
 - Can we even see the low intensity?

Accelerator Physics Experiment to Measure Z_1/n

- The idea is to use the stochastic cooling gear to measure synchrotron frequency bunch-by-bunch
- Fill the machine with a range of intensities and deduce the suppression of f_s with intensity
- This was done once before (EPAC2002, Blaskiewicz et al). Why do it again?

Accelerator Physics Experiment to Measure Z_1/n . Why repeat?

- 1. More data is always a good thing!
- 2. There is a discrepancy between the previous result and calculations (by x 3)
- 3. The coupling impedance is an important parameter for the machine going to higher bunch intensity (brightness)
- 4. New species, proton compared to gold
- 5. New values of γ
 - 1. Proton, 25,100,200
 - 2. Gold, 10 100
- 6. Higher bunch intensity
 - 1. Gold $< 7 \times 10^{10}$ charges per bunch
 - 2. Proton $\sim 1.3 \times 10^{11}$ charges per bunch

Technique for Measuring Z₁/n

• Use the stochastic cooling electronics to measure synchrotron frequency bunch-by-

Technique for Measuring Z₁/n

- Fill the machine with a wide range of bunch intensities
 - The relevant parameter is $N/(l^3)$, where l is bunch length
- Dedicated beam time in Yellow is required
 - One two-to-four hour session at injection for developing the filling technique (and f_s measurements)
 - Normal fill with 28 MHz only at store (test for beam loading effects)
 - Special fill with range of intensities (4 hours at store)
 - Same at 200 GeV